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Abstract

We consider a series of numerical examples and compare several algorithms for estimation of

coefficients in differential equation models. Unconstrained, constrained and Tikhonov regulariza-

'U. tion methods are tested for the behavior with regard to both convergence (of approximation meth-

ods for the states and parameters) and stability (continuity of the estimates obtained with respect

to perturbations in the data or observed states).
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Introduction

In [1], [2] Banks et al. describe an algorithm for solving a two dimensional version of the

parameter identification problem for

( 1 ) D(qDu) = f, x C [0,1],

where q is an unknown to be chosen from some given parameter set Q, f is assumed known, and

observations £a are given for u=u(q). Here D = . while in [1], [23 one replaces D with an

appropriate 2-dimensional gradient operator. The algorithm given in [1], [2] is based on spline

approximations uN , qM e QM for both the states u and unknown parameters q and a least

squares criterion

1

(2) J(q) = i u(q)-a 1 2 dx
d0

A convergence theory (as the dimensions of the approximating spline spaces increase i.e., N -

M - o) is given in [1] where one may use either linear or cubic splines for the state approxima-

tions and cubic splines for the parameter approximations. An essential feature of these particular

convergence proofs is that the admissible parameter set Q and its approximations Q lie in some

compact subset of C[O, 1]. This same compactness assumption plays a fundamental role in proving

stability ( e.g., continuity of the inverse of the mapping from the parameter estimates to the

observations or data) as is discussed in [3], for example. As we shall seek to demonstrate in this

report, it so happens that this compactness is also important in computational aspects of the

algorithms.

Perhaps the most direct way to interpret the compactness requirement is in terms of con-

straints on the parameters. For example, in the computations reported herein, we imposed com-

pactness in C[0,11 by putting upper and lower bounds on the function values as well as an upper

bound on the absolute values of the slope of the functions. The results presented in this paper

illustrate the apparent necessity in many examples of including such a compactness constraint in

* . *..J.
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computational algorithms. Examples are given below where both stability and convergence prop-

erties are as expected whenever a constrained estimation procedure is employed whereas instabil-

ity and divergence is in evidence when unconstrained techniques are used. It is safe to speculate

that similar behavior occurs in problems with parabolic and hyperbolic systems as well as elliptic.

In our own work and in that reported in the literature - e.g. see Yoon and Yeh [7], one sometimes

encounters severe problems with oscillations in the estimates for q as one pushes the algorithms

for increased accuracy in the parameter estimates. As the examples in this report demonstrate,

these difficulties can to some extent be alleviated by imposition of compactness constraints.
4_.

An alternative but essentially theoretically equivalent approach involves the use of Tikhonov

regularization as formulated by Kravaris and Seinfeld in [5]. One restricts the parameter set to

QR a Q with QR compactly imbedded in Q and then modifies the original least squares criterion J
2

to minimize J =J + 3 q R where R is the norm in QR and 0 is a regularization parame-

ter. Thus minimizing sequences for J0 are bounded in QR and hence compact in Q; this is, in some

sense, roughly equivalent to minimizing J over a restriction of Q which is compact even though the

minimization of J, only produces (hopefully) an approximation to the minimizer for the original131

criterion J. In the cases considered below, we use QR = H while Q= C (which corresponds to

A=C and R =H 2 in the notation of [5]).

As we shall see below, each approach has inherent difficu! _s in choosing related imbedding

parameters: in the first, the estimates produced are sensitive to the constraints (the bound L on
L

the derivatives of the parameters in the computations summarized in this report) while the esti-

mates produced using regularization are quite sensitive to the regularization parameter 1.

In our calculations we have attempted to compare the spline based algorithms on a number of

examples for three cases: the unconstrained minimization of J; the constrained minimization of J;

and unconstrained minimization of a regularized criterion J1 .

We briefly outline the algorithms we have used, deferring some of the details to Appendices.

4%
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The Estimation Algorithms

The methods we illustrate here are based on linear spline approximations for the states u in

(1) as well as for the parameter q. Full details of the approximation schemes are given elsewhere

(e.g. see [11, [2] and some of the references contained therein). We consider (1) in weak form and

use the approximate equations

(3) <qDu,Doi> + <fi> = 0, i= 1 ... N-1

where Oi are the N-1 spline basis elements

x - (i-1)/N, xe [ (i-1)/N, i/N

(4) Oi(x) = (i+ 1)N - x, xe[ iN, (i+ 1)N)

0 otherwise.

The aim is to find an approximate estimate of q,

M+I
( 5) qM M= 1.

q M PjV'j

j=1

where the j are the restrictions to [0,1] of the basis elements

x - (j-2)/M, xe [(j-2),M, (j-1)IM)

(6) Oj(x) = j/M-x, xe[(j-1)/M, j/M)

0 otherwise.

These spline basis elements are not normalised to have a maximum value of one. In the

unnormalised form the slopes are plus and minus one, which makes it very easy to express con-

straints on the slope as the difference between the coefficients of successive basis elements. with-

out any scaling factors involving N or M.

.%7
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M . NGiven an estimate q and substituting it into (3) we can solve for the corresponding u
p

where

N-1

(7) uN N i i

Thus uN is a function of qM, i.e. uN(qM) (see Appendix B).

The estimation algorithms estimate q by optimizing over qM in a specified subset of C[O.1]

the functional

(8) jN(qM) f uN(qM) 2 dx

0

The Unconstrained Algorithm

r In this algorithm the functional is taken to be

1

(9) jN(qM) uN(qM)a 2 dx

0

This functional was optimized using the reduced gradient algorithm (Appendix A), without impos-

ing any constraints.

The Constrained Algorithm

This algorithm is similar to the unconstrained algorithm, but the estimates, q , are constrained to

a compact subset of C[0,1]. A suitable compact subset of C[0,1] is the set of bounded functions
U

with bounded derivative almost everywhere, so the constraints imposed on q were I DqM 1 L,

and 0.5!qMs 10.0. The functional (9) was minimized using the reduced gradient algorithm

(Appendix A) with these constraints.

A.o
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The bound on the absolute value of the derivative is the parameter L. The appropriate value

of this parameter to be used must also be estimated, either from apriori knowledge about the

parameter q. or by looking at the behavior of the estimates as the constraints are eased, i.e.. L is

increased.

The constraint that the function be bounded is never significant in the work presented in this

paper; however as we shall see, the results are quite sensitive to the derivative bound L.

Tikhonov Regularization

Tikhonov regularization is one method which has been proposed [5] to prevent the oscillations in

the estimates. The estimation problem is changed by optimizing over a different functional

jN(qM) where

(10) JN(qM) - jN(qM) + qMa

and

4., 1

11 ) jN(q M = lN uN(qiM).I 2 dx

0

1 1

(12 ) jqM11 ,= qM12d+ qM12x4: af = J" iqMIdx+$ DqI~Mj'dx
0 0

This functional was mimimized using the reduced gradient algorithm (Appendix A) without

imposing any constraints.

As we have indicated, the addition of q I a essentially constrains the estimates to a com-

pact subset of the estimation space, but it also creates some bias in the estimate. In the limit as

N, M - cc one cannot expect to converge to the true parameter unless - 0 as N and M -.

5,,
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The choice of ~3and a is somewhat arbitary, similar to the problem of choosing L in the con-

1~*strained algorithm. This problem is discussed in a later section.
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"Data" For The Algorithm

Throughout this work we assume that we know the functions aq and f as continuous func-

tions of x. That is, in the test examples, we are given (independent of the approximation indices N

and M) values for x-.a(x) (though possibly with some error), not just a finite dimensional approxi-

mation to it. Thus the least squares functional (9) is evaluated using an infinite dimensional value

for i. We do not look at the effect of knowing only a finite dimensional approximation to u, as

would be the case if u were observed only for some values of x and then an interpolated function

were used for the observations u.

del

._.

- -,-
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The Error Measure: L vs L'

In some of the results presented in this paper we have looked at the L norm of the estimate

error. We could also have used the L norm of the estimate error.

It is possible to have convergence of an estimate in the L 2 norm but not in the L norm but

not visa versa, of course. However in the examples studied here the L norm of the error has

behaved similarly to the L norm. The oscillations which have developed have not tended to occur

over a shorter length as their height increases, thus the L and L norms of the error have

increased together.

2On those figures which show the changes in estimate error with iteration number both the L

and L norms of the estimate errors are given.

%.

..
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Examples

The following examples were used in testing the algorithms. For examples 2 through 5, f

tends to infinity near x =0, and thus the calculation (see Appendix C) of F (=<f,¢ >) using

Simpson's rule cannot be expected to be accurate. Therefore, for these examples F, was evaluated

using its analytic expression.

Example I

( 13 q = 2+x xe[0,1/3,

8/3-x xe [1/3, 1]

( 14 u = sin(7rx)

Example 2

2+x, xe [0,1/3)

( 15 q = 8/3-x. xe [1/3,2/3)

4/3 +x, xe [2/3,1]

(16) uVx(1-Vx)

Example 3

2 + 2*x, xe[0,1/3)

( 17 ) q = 10/3 - 2*x, xe [1/3,2/3)

2/3 + 2*x. xe[2/3,1]

( 18) u Vx (1 -V/x)

.%M
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Example 4

(19) q = 2, xe[O,1]

(20) u = Vx (1 -Vx)

Example 5

2+x, xe [0,1/3)

(21) q = -3*x 2 +3 t x+5 / 3, xe[1/3,2/3)

4/3 +x, xe [2/3,1]

(22 u = V'x (1 - Vx)

The initial guess for qM

The initial guess for q(x) in all Examples was q0 (x _ 1.

,-I ':''-" '" : : ." . .. . . ' . ' . e ¢ . % , " , . ._ , : ' : ' : '" , , .,
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The Constrained versus Unconstrained Algorithms

In general constraints are necessary for the estimation algorithm to work. We first compare

the two algorithms taking the constraint parameter L to be one, i.e. we require that the absolute

value of the slope of the estimates be less than or equal to one.

For Example 1 both algorithms perform similarly for N and M of comparable magnitude, but

as M is increased only the estimates given by the constrained algorithm are accurate. The esti-

mate given by the unconstrained algorithm develops oscillations (Fig 1 - Fig 4).

These oscillations are reduced as N is increased, but for the algorithm to perform satisfacto-

rilv at low N (a case of importance in actual applications of the method to more complex problems)

the constraints are essential.

The situation is much more dramatic with u taken as Vx(1--V/x), where u is a much more

sharply curving function near x = 0 and hence much harder to approximate with uN when N is

small. For N = 8 the constrained estimate shows little detail but does give an idea of the mean

value of the true estimate (Fig 5). The unconstrained estimate is completely wild and gives no

useful information (Fig 6).

That the unconstrained estimate is so bad is not the result of ill choosen convergence criteria.

The best estimate, found using the knowledge of the true q is shown in Fig 7. The estimate using

much weaker convergence criteria is shown in Fig 8. Neither give much information about the

true q.

Figures 9 - 11 show the behavior of the unconstrained estimate as N is increased. For N = 96

(Fig 11) the unconstrained estimate is good with only small oscillations at each end, and shows a

reasonably steady improvement as J decreases, i.e. is insensitive to the convergence criteria used,

compared to the estimate for N= 16 M = 16 (Fig 9) which deteriorates as you push the cost (J) to

lower values (see the graphs on Figures 9 - 11 of L and L2 vs iterations).

.- "
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On the other hand the constrained algorithm behaves well for all the values of N (Fig 12 -

Fig 14) and is insensitive to when you stop the iterations even for the N = 8 M = 15 case. (Fig 5). It

also provides consistently better estimates with far fewer iterations even when N = 96, although

the number of iterations involved in finding the unconstrained estimate could be reduced consider-

ably by using a better unconstrained optimization algorithm than the reduced gradient method.

When used with no constraints the reduced gradient method is just a gradient method in a space

isomorphic to the estimate space and will not, in general, perform any better than the normal

gradient method.

%
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Finding an Appropriate Value for L

In the previous section we choose the constraint parameter L to be one, which was the slope

of the true parameter. In general the maximum slope of the true parameter will not be known

exactly, but must be estimated. Figure 15 shows the behavior of the estimate, qM, for Example 2

as . is increased. As the constraints are eased, the estimate approaches the true parameter

(graphed with a dashed line here and in subsequent figures). then as the constraints are eased

further the estimates develop the oscillations characteristic of the unconstrained algorithm. From

the graph the best value of L can be seen, provided you have some apriori knowledge of the oscil-

lations which are present in the true parameter.

These examples are slightly artificial in that the slope of q(x) is always one, thus there is a

value of L which is exactly the true magnitude of the slope everywhere. This is not the case for

Example 5 which starts and finishes with slope one, but is parabolic for the middle third. Figure

16 shows the change in estimates for this example as L is increased, while Figure 17 shows the

change in estimates as M is increased. As can be seen the behavior is similar even though the

constraints are not exact everywhere.

,r.5
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Finding Appropriate Values for a and

Some discusion of the problem of finding a suitable regularization parameter f is given in L5].

We found a suitable 0 by trying a wide range of values. Figure 18 shows the estimates for vari-

ous values of 0. It can be seen that as 0 is decreased the estimates converge towards the true

answer and then start to develop the oscillations typical of the unconstrained method. From the

graph the best value of 3 can be seen, without knowing the true parameter, provided some

assumptions are made about the sort of oscillations that are present in the true parameter.

Figure 19 shows the Lc norm of the error versus 0 for several values of a. Note that the

estimate is much less sensitive to the value of 0 as a is decreased. Reducing a has the effect of

limiting the slope of the estimate more than the absolute value of the function.

For the work in this paper, comparing the various algorithms, we used our knowledge of the

true q to choose a suitable value of i.

-6,-A
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The Tikhonov versus Constrained Estimation Algorithms

For low N the behavior of the Tikhonov estimation algorithm is similar to that of the con-

strained algorithm. For Example 2 both are stable as M is increased (Fig 20! and give similar

estimates, provided 0, a and L are suitable values. This is in contrast to the unconstrained esti-

mates, which tend to develop oscillations as M is increased. However with low N both algorithms

give an estimate with no real detail (Figs 21 and 22).

As N is increased while holding M fixed the estimates for all three algorithms improve (Fig

23k, however the constrained algorithm performs best, while the Tikhonov algorithm tends to pro-

duce a flattened estimate (Fig 24).

The bias in the Tikhonov method, evidenced by an estimate which is somewhat flatter than

the true parameter, is more marked the more strongly varying q is. Figure 25 shows the

improvement in the estimate as N is increased for Example 3. The constrained algorithm performs

much better than the Tikhonov algorithm which produces a badly biased estimate, even for the

best f, chosen knowing the true parameter. When is reduced, to reduce the bias, oscillations

develop in the estimate before it gets near to the true parameter (Fig 26).

The constrained estimation algorithm does not have this problem. As L is increased the esti-

mates come close to the true parameter and only then develop oscillations (Fig 27).

For a very flat function the Tikhonov method works well. The parameter q in Example 4 is

just a constant function. As 3 is decreased, with sufficiently large N, the Tikhonov estimates con-

verge to the true parameter and only then start to develop oscillations as p is decreased further

(Fig 28).

For this flat function the constrained algorithm also works well, if given much tighter con-

straints than in the previous examples. The estimates for various values of L are shown in Figure

29.
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The Stability of the Estimates With Perturbations of U

To test the stability of our algorithms with respect to noise in the data, we took the true u,q

and f in Example 2, but perturbed u to produce the data a=up in the cost criterion J. We used a

perturbation of the form

u p(x) = u(x) + p(x)/K

where p(x) is the perturbing function, and K determines the size of the perturbation. As K is

increased u p(X) - u(x). We used two perturbation functions:

(a) pl(x)=x(1-x)

(b) P2(x) = 1
'4.

Note that pl(x) satisfies the same boundary conditions as u while P 2 (x) does not.

The unconstrained, constrained and Tikhonov estimates for several values of K with pertur-

bation function p 1 (x) and N=8 and M= 15 are shown in Figures 30 - 32. With the constrained

and Tikhonov algorithms the estimates improve steadily as the error in the input data, u, is

reduced, while the unconstrained estimates are bad even with the exact data. The LO norm of the

errors in the final estimates versus K for N=8 M= 15, N= 16 M= 16 and N=64 M= 16 for both

perturbations are shown in Figures 33 through 38. Figure 33 also shows the results for the

unconstrained algorithm when weaker convergence criteria are used.

For all the values of N the behavior of the constrained and Tikhonov methods are similar,

with the estimate improving steadily as up(x) -. u(x), the true solution.

For small N, the unconstrained estimates actually get worse as up approaches u(x), and for

all perturbations these estimates are worse than the initial guess, which has an error in the L '

norm of 4/3. For large N the unconstrained estimates are stable with respect to perturbations of

the input data.
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By comparing Figures 35 and 38 it can be seen that perturbation 2, which does not satisfy

the same boundary conditions as u, has a much greater effect on the estimate error.
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The Convergence Criteria

In finding the estimates the reduced gradient algorithm was run until one of the following

conditions was met:

(a) the sequences qM and Ji both converged, where xi was said to have converged if:

(G) 1xi-xi.51/1xil :5 10"5--e

or (ii) IIxi-xi.5 _ 10-14

where I x is the L norm squared if x is qM and is just J(qM) if x is J(qM)

(b) the number of iterations exceeeded 999 (or in some cases 9999)

In several of the examples, especially unconstrained examples, the best estimate does not

occur when J is minimized. The convergence criteria used in the work for this paper were very"

tight, and it is possible that in using such tight criteria the optimization of J was Laken too far.

Thus the oscillations seen in the above examples could be a manifestation of numerical inaccura-

cies which became significant when reductions in the cost J at each stage of the optimization

algorithm were comparable to the error in the evaluation of J.

To check this effect several of the examples where the estimates do deteriorate significantly

as J is reduced were rerun with the following weaker convergence criteria.

The reduced gradient algorithm was run until one of the following conditions was met:

M(a) the sequences q i and J, both converged, where xi was said to have converged if:
Wi nxi-xi.51/1xil !5 10-2= C

or (ii) 1xi-xi 5l : 10 8

where n is as described above.

(b) the number of iterations exceeeded 999
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Figures 39 through 41 show the results. In general the estimates are slightly better but still

show the same defects, just not as highly developed. Even using the knowledge of the true param-

eter to find the best estimate (best meaning the estimate in the sequence wih the smallest error

in the L norm) does not produce a good estimate, just one with the same faults at an earlier

stage. We can therefore conclude that the convergence criteria used here, which are stricter than

would be used if computing time were significant, are not producing results with errors due to

numerical inaccuracies. Rather the deficiencies in the estimates are true manifestations of algor-

ithm weaknesses.
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Conclusions

The work in this paper demonstrates severe problems in some instances with using an

unconstrained algorithm to estimate the parameter q. When modified, either by regularizing the

problem using Tikhonov regularization or by constraining the estimate set ,,the

algorithm does give good estimates.

Unlike the unconstrained algorithm, both the Tikhonov and constrained algorithms are stable

with respect to increasing M while holding N fixed. However as N is increased the estimates from

the Tikhonov algorithm do not improve as much as do those of the constrained algorithm. The

Tikhonov estimates are biased by the regularization of the cost functional, and never show all the

detail of q when q has significant variation.

Both the constrained and Tikhonov estimation algorithms are stable with respect to system-

%" atic errors in the input data, while, except when N is large, the unconstrained algorithm fails to

give good results on even the exact data.

For both the Tikhonov and constrained algorithms there are parameters which affect the

algorithm's performance. For the constrained algorithm suitable constraints must be found while

for the Tikhonov algorithm suitable values of d and¢4 must be found. The constrained algorithm

has the advantage that the constraints used here, i.e. limits on the slope of q, have an obvious

meaning, and so may well be known in advance. In the Tikhonov algorithm and a have no

obvious meaning. They must be suggested by looking at the change in the estimate behavior as 6,

and a change, and perhaps using some apriori knowledge about the shape of q to choose values of

and a that give an estimate that is neither too flat, nor too oscillatory.
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Appendix A The Reduced Gradient Optimization Algorithm

For each M, qM is represented as a linear combination of linear splines. The set of such

functions is a subspace of C[0,1] which is isomorphic to R M+ 1. The bounded derivative condition

in C[0. 1] becomes a condition on the difference between successive coefficients in R M+1 i.e.

SPj + 1-pj I must be bounded. The condition that the function be bounded becomes a condition on

the values of the individual coefficients, i.e. I j must be bounded.

Thus the minimization is over a subset of R M + 1, this subset being defined by a set of con-

straint equations. To find the minimum subject to these constraints the reduced gradient algorithm

[6] was used.

In the reduced gradient algorithm the coefficients of qM are transformed by a linear transfor-

mation to give coefficients with respect to a new (in general, nonorthogonal) coordinate system in

which the constraints are rectangular. The minimum is then found by a modified gradient algor-

ithm. At each iteration there is a linear search, the direction of which is given by the gradient of

J(qM), with respect to the new coordinate system, modified by setting to zero any components

which would cause the linear search to violate a constraint.

The reduced gradient algorithm was also used when there were no constraints, so the results

could be compared with the results for the constrained case. Although there were no constraints -'

the coefficients were still transformed using the same linear transformation as for the constrained

case. However in this case the linear searches were in the direction of the unmodified gradient

vector, there being no constraints to violate.

MMIn both the constrained and unconstrained cases a diagonal search direction, i.e. q i - -1'

the direction given by the difference between the two previous estimates of q, was used whenever

(a) the dot product of the two previous improvement vectors was negative, i.e.
"-" M M M M <"

(q 2 )  ,

and (b) neither qM nor qM were the result of a diagonal step.

i i%
I] -;::"-;-;: "- :.:-,. :9.
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Appendix B Finding uN as a function of qM

In this section the tensor summation notation is used, i.e. when an index appears as both a

subscript and a superscript in a product term it represents the sum of the product over the

repeated index.

Substituting (5) and (7) into (3) we obtain

M+I N-i
(23) < I pjpj . oiDoi, D~k > + <f,'k> 0, k=l,..,N-1

j=l i=

or

M+ 1 N-1
% PjCai<oj Doi, D~k > + Fk = 0, k= 1, .. ,N-1
j=l i=1

which is equivalent to

P jM)i + Fk = 0

where

(24) Fk = <f,Ok>

(25) M j = < jDik>
k i Sk

1

f =j Doi 0 k
d x

0

p/N
- Ojdx - -I, i=k+l=pork=i+1=p

((p-1)/N

(i + 1)/N 
j

- -1 dx =1 + I i=k
f (i- 1)/N Ji

0 otherwise.

Thus M j are symmetric positive definite tridiagonal matrices for each j. So A = P M , isk k Pjk

also a symmetric tridiagonal matrix, and is positive definite if pj > 0 for all j.

.
,

14p'I
.4i
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Thus

(26) Aki + Fk =0, k = 1,..,N-1

has a unique solution.
6

'.
The matrix A', being an n x n symmetric and tridiagonal matrix, has an

kp

LDLt-decomposition where L is lower triangular with one's on the diagonal and one non-zero

lower diagonal and D is diagonal ([4] with DLt=U).

i.e.

= 1, i=j, 1:i~n

(27) L = j=i-1, 25i!n

=0, otherwise.

(28) D = i, i=j, li5n

=0, otherwise.
* i

Because of the form of Me', Ak has the following special form:
k, ks

= Xi + Xi+ 1' i=k

(29) Ak Xi, i=k+l

=- Xk, i=k-1

where

(30) X i  Pj

*With this form -yi and g i are given by:

'"~~ 71 = X+X2
1 2°

' (31) - C(i) / C(i-1) 2!.ir;n

/ = -Xi/,yi.1i 2si-;n

where C(r) is the sum of the r+ 1 products of possible combinations of r 's out of the first r+ 1

's (i . r+l1).

e.g. C(2) =JI i i+I I ]

-."ft. ... ,- ".'.... , , ft" . * p.o -" , " ., ': "t = "-' .: d ,. p *- - -



Proof

Substituting the elements of Al into the equations for the LU decomposition of a general tri-

, diagonal matrix [4),

the values of y i and ui are given by:

( 32 ) 1 = XI+X2

33. ) aa 7 Xi+X+ 1 2- - i-1 i=2 .. n

S( 34 ) Xi Yii-I

Assume (31) is true for some i, then using (33)

(35 (X +XXi+ 1 ) 2 C(i-1)/C(i)

= C(i+ 1)/C(i)

so (31) is also true for i+ 1. (31) is true for i=2 so by induction it is true for 2Si_5n.

, 5

The value of C(i) is easily calculated from C(i-1) so the calculation of , i and pi and hence of

the LDLt - decomposition can be done very quickly and easily. However C(i) grows (or declines)

exponentially with i. In a numerical implementation this problem can be soled by calculating

C(i)/I where j is the geometric mean of the Ii . In the programs used here u was approximated

by taking the geometric mean of I1 , IINT(N/2), and IN -

t N-

Given the LDLt-decomposition of Ak equation (26) can be solved to give uN as a function of

qM by simple back substitution.

r A..

% N
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Appendix C Implementation Details

The evaluation of integrals by Simpson's Rule

The quantities J(q ) Fi = <f,0i> and I qM were evaluated using Simpson's rule with

NI subdivisions of the interval [0,1] for the first two and N2 subdivsions for the last one. The

quantity I qM Iwas evaluated by sampling the difference at the same N2 points used in the

Simpson's rule evaluation of the L 2 norm.

N I and N2 were always at least twice N and M respectively. Only the value of N I affects

the algorithm. The accuracy of the integration will be most sensitve to changes in N I when one of

N or M is not a multiple of the other. In this case the product f" i has a discontinuous derivative

at the points i/N and j/l, and the j/M points are not, in general, included in the sum for the

Simpson's rule evaluation of the integral of the product f. 0"

The value of N2 does not affect the convergence of the algorithm, it affects only the evalua-

tion of the L2 and L. norms, which were used for informational purposes and for determining

convergence but not in the calculation of the successive steps of the optimization.

The implementation of the algorithms

.5, The algorithms were implemented in FORTRAN on an IBM3081. Double precision arithmetic

was used throughout.

A:

S:,:

.5Q
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